Using the REST Service Broker with Azure
API Apps

Contents

SELHING UP the AZUIE APl AP cuuiiiei ittt ettt ettt e e ette e e s etee e e s ste e e e ssbeeesssabeeesesnbeeeeessbeeesessseeesensseeessnnsenas 2

Creating the REST Broker SErvice INSTaNCEuiiiiiiiii ettt e e see e e s sree e e s sree e e e areeas 2

Using the SMartObJECt METNOUSuviiiiiiie et e e e etre e e e e e e e s saare e e esasseeesannraeenan 5

Appendix A: Configuring the APl App wWith OAULh SECUFITY ...cccvvieiieiiiee e e 9
ConfigUriNG YOUI AZUIE AD AP «eeeeeeuriieeeiiiieeeiiteeeeitteeeestteeessateeesssteeessssaeeesassaseessssaeeesssseasssssseessssssenes 12
Configuring yOUr OAULN RESOUICEuiiiiiiiiieciiiie e ettt et e e et e e s ste e e et ae e e e sabae e e sabeeeesnbeeessnsbeeesenasenas 13

Appendix B: Using the REST Broker with Microsoft Graph..........ccoeecuiiiieciiii e 15

Azure APl apps are web applications that reside in Microsoft Azure (you can learn more about Azure API
Apps here and here). This article describes how you can use the REST Service Broker provided by K2 to
expose Azure APl apps as SmartObjects, making it easy to integrate with Azure APl apps from
SmartForms, workflows and other SmartObject consumers.

In this article, we will use the To Do List sample application provided by Microsoft to describe how to
achieve this integration, but the concepts apply equally to other Azure API apps. You can find the
tutorial for the To Do List sample application at https://azure.microsoft.com/en-
us/documentation/articles/app-service-api-dotnet-get-started/

A few important things to note before you begin:

1. You may want to review the K2 Knowledge Base articles Integrating a REST-based Service with
K2 and Generating a Swagger Descriptor for REST-based Services using RESTUnited.com for
more detail on the REST Service Broker and Swagger descriptor files.

2. Make sure you update to the latest version of the Azure SDK.

3. While we use Visual Studio 2015 in this article, this project should also work in Visual Studio
2013.

4. For testing purposes, we will only use Anonymous authentication. Azure AD and other
compatible authentication mechanisms should work with this example as well, refer to
Appendix A: Configuring the APl App with OAuth Security for details on using OAuth
authentication.

5. You will need an active Azure subscription to host the API App.

6. You should have some cursory knowledge of the following technologies:

e Azure, including the Microsoft Azure management portals
e Web apps/Azure APl apps/Azure AD apps
e REST services

https://azure.microsoft.com/en-us/services/app-service/api/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-platform/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/
http://help.k2.com/kb001757
http://help.k2.com/kb001757
http://help.k2.com/kb001758

e Swagger (used to describe the service)
e OAuth
e Visual Studio

Setting up the Azure APl App

If you already have an Azure API app deployed, you can skip this section and start at Creating the REST
Broker Service Instance. Otherwise, follow Microsoft’s To Do List tutorial to download the sample
project, and walk through the tutorial steps up to the point where you publish the ToDoListDataAPI to
Azure. (Note that some of the screenshots or instructions in the article may be outdated and you may
see slightly different options, especially during publication of the project.)

The To Do List application is a three-tiered application, and you may want to run the application locally
first before attempting to deploy it to Azure. For the purposes of this article, only the Data tier APl app
(ToDolistDataAPI) app is deployed, since the Data tier APl app is all that is necessary to demonstrate
the concept of querying and submitting data to an Azure APl app using the REST broker in K2.

To Do List Application

ToDolistAngular ToDolistAPI ToDolistDataAPI
SPA web app Middle tier Data tier
APl app APl app
.I"L _,-"II

Creating the REST Broker Service Instance

REST services, unlike other web services, do not typically include metadata describing the data model
and methods used in the endpoints of the service. To integrate a REST service with K2 using the REST
broker, you must provide this metadata in Swagger format so that K2 can discover the data model and
methods in the REST service and generate Service Objects to represent those.

When you deploy an Azure APl app to the cloud, and assuming you've incorporated the Swashbuckle
NuGet package in your source as shown in the To Do List APl app tutorial, you can obtain the Swagger
APl metadata for your APl app by simply appending /swagger/docs/v1 to the APl app URL (You can
obtain the API App URL from the API Definition in Azure Portal).

http://swagger.io/
at%20https:/azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/
https://www.nuget.org/packages/Swashbuckle
https://www.nuget.org/packages/Swashbuckle

ToDolistDataAPIAug2016 - API Definition

ToDolistDataAPlAug2016
Push
APl definition lets you configure the location of the Swagger 2.0 metadata describing
d your AP, This makes it easy for others to discover and consume your APl Note: the
AP URL can be a relative or absolute path, but must be publicly accessible.
) 3 API definition location
CORS https://todolistdataapiaug2016.azurewebsites.net/swagger/docs/vl
CORS
MONITORING
W Alerts
.

The location of the Swagger file can then be used directly in the REST broker service instance
configuration page to allow K2 to generate the Object Types and Service Operations necessary for
building SmartObjects that can interact with the Azure API app.

TIP: The Swagger file does not have to exist on the service endpoint, nor do the Swashbuckle classes
need to be part of the service's project. You can generate your own Swagger Descriptor file if you prefer,
as described in the K2 Knowledge Base article Generating a Swagger Descriptor for REST-based Services
using RESTUnited.com. However, having the Swagger descriptor generated for you and using the
Swagger descriptor URL directly in the service instance is a low-effort and low-maintenance way of
getting and updating a Swagger file.

You can see in the image below that the Descriptor Location field contains a URL to the Data tier API
app, with the /swagger/docs/v1 included at the end of the URL. Each time the service instance is
refreshed, the REST broker queries the URL for the latest Swagger JSON file and uses that to
generate/update the Object Types and Service Operations for the service instance.

http://help.k2.com/kb001758
http://help.k2.com/kb001758

Configure Service Instance D X

OAuth Resource MName: ToDolist v
OAuth Resource Audience:
User Mame:
Password:
| Extra:

Enforce Impersonation
Service Keys

SETTING VALUE

Serialization: Include All Assem... True

Default HTTP Reguest Headers

Descriptor Location * https/itodolistdataapiaug2016.azurewebsites net/'swagger/docsivi

Mames: Append Property Types True

Certificate Store Location CurrentUser
Break on Error False
Debugging Enabled False

Certificate Search Value
Add HTTP Response Header Pr... False
Certificate Search Method FindBySubjectilame

Mames: Use Method FullName True

Certificate Store Mame My
Serialization: Compress Falze

Add HTTP Request Header Pro... False

In our example below, after registering the service instance using the generated Swagger descriptor
URL, the ToDolListDataAPI service instance contains one Object Type (ToDoltem) and one Service
Operation (ToDolList_DeleteByOwnerAndld), which the REST broker found in the Swagger descriptor
file when creating the service instance.

Service Instances
+ Add 4 Edit X Delete + Generate SmartObjects o Refresh Service Instance o Refresh
Selected Filter: Default
Generate SmartObjects D X
NAME
Create Update Delete
* SharePoint Groups Service
- SharePoint Integration Select All
* SharePoint MetaData Service P o Obiect Types -
% SharePeint User Functions Service =B ToDoltem
4 W servi perati

» SmartBox Service Service Operations

2B ToDoList_De eteByOwnerAndId(Int32 i

SmartCbject Service Functions -
» 4 System Types
% SmartObject Services Refresh =B soolean
* Task Allocation Service =l Byte
gy ToDoListDataAP = char
_ =l DateTime

* URM Service _ L |

=l Decima

Workflow Reporting Service -

» WREpOTtng M Double
» Workflow Service <0 Guid

=0 HitpHeader

Hint16

M int32 v

Once you have the instance created you generate your SmartObjects. For K2 blackpearl customers, if
you're using the SmartObject Service Tester tool, you can right-click on the instance and select Generate
SmartObjects. For Appit and K2 blackpearl customers, create them using the Generate SmartObjects

button when the service instance is selected.

Using the SmartObject Methods

To test that the SmartObjects are working properly, use the SmartObject Services Tester tool to execute
the ToDolList_GetByOwner method of the ToDoltem SmartObject, using an asterisk (*) as the owner, as

shown below:

Method to Execute: |'|'.;;I DioList_GetByCwner

- Input Prop|
Imput Properties |

X Clear Values @' Generate Data
owner (5) [Teasd) - Required

4 Result
List Results |

ATREEE of2 | b M |

D Description Chwnier
feed the dog .
take the dog on 2 walk | *

Next, try adding something to the list through the SmartObject. Do this by first running the Serialize
method of the same SmartObject, putting in a value of your choice in for the Description, and using * as

the Owner:

b Execute %] View Xml |#] Refresh SmartObject

Information

SmartCbject Mame: ToDolem

Method to Execute: |Serialize

- Input Properties
Input Properties |

>< Clear Values @ Generate Data
1D { Mumber }

Description (Text) |feed the cats
Owner | Texd) -

- Results

| Retum Properties | List Results | Serialized tem (String)

{"Shype":"ToDolistDemao1 k2RESTidentifier_ToDokem, ToDolistDemo1, Version=0.0.0.0, Cutture=neutral,
Public Key Token=nul"," Description™:"feed the cats”,"Cwner":""}

Copy the Serialized Item (String) value into something like Notepad, and then paste the serialized string
as the input for the ToDolList_PostByTodo method, as shown below:

b Execute % View Xml |£] Refresh SmartObject
Information

SmaritObject Mame: ToDoltem

Methodto Execute: | ToDoLlist_PostByTodo

- Imput Properties

Input Properties |

>< Clear Values |'_’T Generate Data
todo (ToDoltem) (1) {Mema) - Required |} 0.0.0, Cutture=neutral, Public Key Token=null"," Description™:"feed the cats","Chwr

4 Results

Retum Properties | List Results |

HitpResponseCaode | Mumber) |2.|].4

Now you can run the original ToDoList_GetByOwner method again to make sure your new item has
been added to the list:

b Execute % View Xml |#] Refresh SmartObject

Infarmation

SmartObject Mame: ToDoltem

Method to Bxecute: |T|:| Dolist_GetByOwner

-

Input Properies |

>(Clear Values d Generate Data
owner (5) { Text) - Required

-

a
List Results |
1 of3 | b Pl
D Description Chwner
_ feed the dog -
1 take the dog on 2 walk |*
2 feed the cats -

Appendix A: Configuring the APl App with OAuth Security

If you want to allow users to authenticate with the Azure APl App through OAuth, you must create a
new Azure AD app or use an existing one. (If you want to use other authentication providers like
Facebook, Google, Twitter or a Microsoft Account you need to create an App using the desired
Authentication Provider). Securing an Azure API app requires that you create a new Azure Web app in
addition to an Azure AD app. This allows the access permission to be delegated from Azure web app to
the Azure AD app associated with the To Do List app.

At this point you'll find it helpful to carefully read the article How to configure your App Service
application to use Azure Active Directory login (https://azure.microsoft.com/en-
us/documentation/articles/app-service-mobile-how-to-configure-active-directory-authentication/) in

https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-how-to-configure-active-directory-authentication/
https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-how-to-configure-active-directory-authentication/

order to understand the authentication and authorization configuration. This is the same article that is
linked to from the information panel at the top of the AAD configuration blade as shown here:

? ToDolistDataAPIAug2016 - Authentication / Authorization & Azure Active Directory Settings

Hsave X Discard

Authentication / Authorization

By These settings allow users to sign in with Azure Active Directory. Click here to leam &z
_ﬂ - \ more.
= Bverview Authentication / Authorization is a tum key solution that lets you control access to
your app
B Activity log Management mode @ | Off A:Wan(ec
i Access control (1AM) App Service Authentication
& Toos Express mode allows user to create an AD Application or select an existing AD
2 X application in your current Active Directory.
Action to take when request is not authenticated
3 n o v roble
Diagnose and solve problems Log in with Azure Active Diractory -
Current Active Directory
- . K2 Labs
APP DEPLOYMENT Authentication Providers |
& Quickstart R T Catenr N Management mode @ [RANEMPNIERY Select Existing AD App
Not Configured .
A Deployment credentials Create App
H facebook N ToDolistDatalPlAug2016
Not Configured
48 Deployment options
H coogie S
Not Configured
SETTINGS
= Application settings 2 rwiter >
Not Configured
Authentication / Authorization
¥ Microsoft Account 5
& Backups Not Configured
B8 Custom domains
Advanced Settings
O SSL certificates
tokensore | o [N
3 Networking
4 Scale up [App Service plan)
{7 Scale out (App Service plan)
@ Security Scanning
et | ox |

When you add authentication to your Azure APl app, you're creating a new Azure AD app that, by
default, is named the same as your Azure APl app. This can be confusing, but it helps to remember that
your data APl app is actually not technically an app but rather an API resource. If this APl resource must
be secured, the APl resource has to be associated with an Azure AD app, and that Azure AD app must be
trusted by another Azure AD app, in this case an app called K2REST WebApp. The following diagram
illustrates this. The token is generated by the K2REST WebApp that is attached to the Azure AD instance,
then (because it has permissions to call the Azure AD app linked to the ToDoListDataAPIAug2016 Azure
APl app, it uses that token to retrieve the information.

Azure Active Directory Azure APl App

S

IR T Oauth Exchange ToDolist :
C'E__-—--"' ToDolistDataAPlAug2016

You may not need to create a new Azure AD app in order to grant permissions to your Azure API service
(which is, in turn, secured by the Azure AD app called ToDolListDataAPIAug2016). You may already have
an existing Azure AD app in your Azure subscription. However, if you do need to create a new Azure AD
app, go to your Azure AD landing page in the old portal and click Add at the bottom of the page to
create a new web app.

{=})

VIEW ENDPOINTS DELETE

App properties

5IGMN-0OM URL

APPID URI

The SIGN-ON URL and APP ID URL values don't really matter for the purposes of this article, but note
that the SIGN-ON URL is used as the default REPLY URL configuration for your Azure AD app.

Tip: Think of this Azure AD app as your master Azure AD app that has permissions to call into one or
more other Azure AD apps that are used to secure your Azure APl apps. The practice of calling
everything an “app” can get a little confusing. Think of your Azure AD app (that you created when
configuring your data API app for authentication) as having a one-to-one relationship with your data API,
whereas the one you create here has one-to-many relationships with other Azure AD apps used to
secure other Azure APls.

In order to setup an OAuth resource in K2 for your service instance to use, you must configure this Azure
AD web app properly. This involves specifying a valid Reply URI, generating a key for it, and delegating
permissions to the Azure AD app that is securing your Azure API app. These tasks cannot be done in the
standard Azure Portal but must currently be done in the old portal at

https://manage.windowsazure.com (The old portal is being phased out and it is assumed that this
functionality required here is going to be made available in the Azure Portal at some point).

Configuring your Azure AD App

In the old portal select Active Directory on the left side, then go into the directory that you want to use
(typically you'll only have one). Once in the directory, click the APPLICATIONS tab and find your Azure
Web App. Browse into your app and then click on CONFIGURE, and then follow these steps:

1. Make note of your web app's Client ID. This value is used in your OAuth resource parameters.

CLIENT ID r‘

2. Generate a key to get a client secret that is used in your OAuth resource parameters. Important:
You only see this key once, so copy it and store it in a secure place.

1 year v 8/24/2016 8/24/2017 c3EOnUSTKY 1CP4UIzg8FonBghlC)o0mHIjeTSg/Blpk= e x

3. Specify your Reply URL in the single sign-on section, which, if you're using a Denallix machine, is
https://k2.denallix.com/identity/token/oauth/2

REPLY URL https://k2.denallix.com/identity/token/oauth/2

4. Click Add application and find your application in the All Apps list, or search for it. Once you've
added it, delegate permissions for the web app to access it.

I ToDolistDataAPIAug2016 Application Permissions: 0 v Delegated Permissions: 1 v x

[7] Access ToDoListDatadPlAug2016

Tip: If you do not see your app you can search for it — sometimes it takes a while for it to appear
on the main list.

5. Save the configuration, and then click VIEW ENDPOINTS at the bottom to get your OAuth
Authorization and Token endpoint URLs which you use on the OAuth resource instance.

https://manage.windowsazure.com/
https://k2.denallix.com/identity/token/oauth/2

App Endpoints

If you are developing an app that integrates with Microsoft Azure AD,
update your code to use these endpoints for single sign-on and directory
access

FEDERATION METADATA DOCUMEMNT
https://login.microsoftonline.comy
W5-FEDERATION SIGN-OM ENDPOIMT
https://login.microsoftonline.comy
SAML-P SIGM-OM ENDPOINT
https://login.microsoftonline.comy
SAML-P SIGM-OUT ENDPOINT
https://login.microsoftonline.comy
MICROSOFT AZURE AD GRAPH AP ENDPOINT

https://graph.windows.net/

QAUTH 2.0 TOKEN ENDPOINT
https://login.microsoftonline.comy
QAUTH 2.0 AUTHORIZATION EMDPOIMNT

https://login.microsoftonline.com

Configuring your OAuth Resource

Once you have all of this information, go to K2 Management or the Manage OAuth Resources form and
configure the OAuth resource with these values. For more information see OAuth authentication with
Azure OData Web Services (http://help.k2.com/kb001751), but here they are at a high level.

1. Create a new resource using the Microsoft Online resource type, giving it a name like ToDolList
2. Use the Authorization and Token endpoint URLs when creating the resource

http://help.k2.com/kb001751
http://help.k2.com/kb001751
http://help.k2.com/kb001751

redirect_uri
GP': a
y BPi_version
@,
n SCOpE
@&

response_type
@, l S
n FEsource
@,

o client_secret
(1]

y entity_id
&

https=/k2 denallix com/identity/tokensoa...

code

httpzitodelistdataapiaug2016.azureweb...

3. Fillin the parameters of the resource with the information you gathered when setting up your
app, namely the client_id, redirect_uri, resource, and client_secret. Your final configuration
should have values in the following operations:

Parameter Operation Example Value

client_id Authorization, 50ddhha4-4c36-4eae-b3b5-1310188bc288
Token and Refresh

redirect_uri Authorization, https://k2.denallix.com/identity/token/oauth/2
Token

resource Authorization, https://todolistdataapiaug2016.azurewebsites.net
Token and Refresh

client_secret = Token and Refresh fjiXs/VylIMF5GQABWWsS6RSGCsKdgllUSWCex7KNdo=

4. Your redirect_uri must be the same as the one you configured the app with, and is in the
format: https://{URL}/identity/token/oauth/2
Your final OAuth resource will look similar to the following:

Resources

= New # Edit Y Delete () Refresh

NAME TYPE AUTHORIZATION ENDPOINT TOKEN ENDPOINT USE HOST SERVER AUTHORI
e ToDolist Microsoft Online https=/flogin.microsoftonline.co https:/flogin.microsoftonline co false

@ 525 - 5cB9acy7-e67f-4752-.. SharePoint 525 false
Resource Parameters

4 New # Edit ¥ Delete (, Refresh

NAME AUTHORIZATION VALUE TOKEN VALUE REFRESH VALUE

o grant_type authorization_code refresh_token

e, client_id

hitpsk2 denallixcom/identity/tokensoa...

http:/ftodolistdataapiaug2016.azureweb... http:/ftodolistdataapiaug2016.azureweb. .

5. Register a new REST broker service instance using the SmartObject Services Tester Tool or K2

Management.

6. Choose OAuth as the authentication for the service instance, and then select the OAuth
resource you created.

7. Point the Descriptor Location to the online URL with /swagger/docs/v1 at the end of it, for
example https://todolistdataapiaug2016.azurewebsites.net/swagger/docs/vl (You may have to

add the s in https if it only includes http)

https://k2.denallix.com/identity/token/oauth/2
https://todolistdataapiaug2016.azurewebsites.net/
https://todolistdataapiaug2016.azurewebsites.net/swagger/docs/v1

8. Click OK to add the service instance, logging into Azure with your credentials, and granting the
app permission to act on your behalf.

9. Once the service instance is registered, generate SmartObjects and use them in K2
Management, the SmartObject Services Tester tool, or in a view to interact with your data in the
cloud.

Appendix B: Using the REST Broker with Microsoft Graph

Using the REST broker with an app that exposes Microsoft Graph functionality is similar to integrating
with an Azure API app. For this section of the article you use a Web app (as opposed to a mobile app)
generated from Microsoft's Application Registration Portal (https://apps.dev.microsoft.com/). These

types of apps are sometimes referred to as 'v2' Azure apps.

When creating the new app be sure to make note of the following information:

e The Application Id: A long GUID like a17f3d75-b483-3847-88b3-39k2039485d19

e The Application secret (password): A long alphanumeric code like yzL5heUxouXTBbFLerZykd3

o Allow implicit flow of the token and add a K2 redirect URL in the format:
https://{URL}/identity/token/oauth/2

Once you have this information you can create the OAuth resource as you did for the Azure API app,
using the following for the resource:

e Authorization Endpoint: https://login.microsoftonline.com/common/oauth2/v2.0/authorize
e Token Endpoint: https://login.microsoftonline.com/common/oauth2/v2.0/token

For the Graph API you must also supply a scope for which permissions are granted to the K2 server to
act on your behalf. Scopes look like Directory.Read.All and Group.Read.All. For more information see
http://graph.microsoft.io/en-us/docs/authorization/permission _scopes)

Note: You do not have to follow the instructions in this appendix if you simply need to call the Graph
API. Microsoft makes Graph and all of the associated scopes available on the permission section of the
CONFIGURE page of your Azure AD app (as shown in step 4 of the Configuring your Azure AD App
section above). You could simply use that to call into the Graph API, as shown in the following image,
instead of creating a 'v2' app. You would still need to create a Swagger descriptor file, however.

https://apps.dev.microsoft.com/
https://login.microsoftonline.com/common/oauth2/v2.0/authorize
https://login.microsoftonline.com/common/oauth2/v2.0/token
http://graph.microsoft.io/en-us/docs/authorization/permission_scopes)

REPLY URL

permissions to other app

ToDolistDataAPlAug2016
Windows Azure Active Directory

I Microsoft Graph

=)

VIEW ENDPQINTS UPLOAD LOGO

https.//k2.denallix.com/

https.//k2.denzllix.com/identity/token/oauth,2

ications

Application Permissions: 0

Application Permissions: 0

|Application Permissions: 0 | hd | Delegated Permissions: 0 hl x

[] read identity risk event information

[[] read and write user mailbox settings {preview
[] view users' basic profile

[] view users' email address

[] create, read, update and delste user tasks anc
[] read user tasks

[[] Read and write notebaoks that the user can ac
[[] read all notebooks that the user can access (p
[] read and write user notebooks (preview)

[[] read user notebooks (preview)

Add application

]

=]

Once you have the OAuth resource created you can register an instance of the REST broker (But you will
need to create a Swagger file first in order to describe the service.) Attached you can find a
MicrosoftGraph-Example.json file that describes some of the Graph API. Use this as a starting example
to build your own. You may also want to look at KBO01758 - Generating a Swagger Descriptor for REST-
based Services using RESTUnited.com

When you register the service instance you are redirected to authenticate and grant permissions to K2
to act on your behalf, calling the app with your token. Depending on the scope you specified in the
OAuth resource, the prompt to authorize K2 may have one or more permissions:

http://help.k2.com/kb001758
http://help.k2.com/kb001758

Denallix Tech UK Graph Explorer

App publisher website: k2.denallix.com

Denallix Tech UK Graph Explorer needs permission to:

= Read your files @

= Read items in all site collections @
+ Read and write all groups @

= Read and write directory data @

You're signed in as:

administrator@denallixtechuk.onmicrosoft.com

Show details

Clicking Accept grants the permissions and, once you register the instance, you'll see a list of service
objects created that you can then use to create SmartObjects.

_:| REST

. =-[&] MicrosoftGraph-Eample
i---,_,_ Object Types

~-bjg] GraphDriveltem
~-blg] GraphDriveltemAmay
~-bjg| GraphEmor

~-bjg] GraphGroup

~-blg] GraphGroupAmay
~bjg| GraphlnnerEmor
~-blg| GraphPerson

~-blg] GraphPersonAmay
~bjg GraphlUser

bl GraphUserfmay
System Types

C AR SEERE SERE SRS SRR E SRR E SRR 3 B E S e S e

[s

