
Using the REST Service Broker with Azure
API Apps

Contents
Setting up the Azure API App .. 2

Creating the REST Broker Service Instance ... 2

Using the SmartObject Methods .. 5

Appendix A: Configuring the API App with OAuth Security .. 9

Configuring your Azure AD App .. 12

Configuring your OAuth Resource .. 13

Appendix B: Using the REST Broker with Microsoft Graph ... 15

Azure API apps are web applications that reside in Microsoft Azure (you can learn more about Azure API

Apps here and here). This article describes how you can use the REST Service Broker provided by K2 to

expose Azure API apps as SmartObjects, making it easy to integrate with Azure API apps from

SmartForms, workflows and other SmartObject consumers.

In this article, we will use the To Do List sample application provided by Microsoft to describe how to

achieve this integration, but the concepts apply equally to other Azure API apps. You can find the

tutorial for the To Do List sample application at https://azure.microsoft.com/en-

us/documentation/articles/app-service-api-dotnet-get-started/

A few important things to note before you begin:

1. You may want to review the K2 Knowledge Base articles Integrating a REST-based Service with

K2 and Generating a Swagger Descriptor for REST-based Services using RESTUnited.com for

more detail on the REST Service Broker and Swagger descriptor files.

2. Make sure you update to the latest version of the Azure SDK.

3. While we use Visual Studio 2015 in this article, this project should also work in Visual Studio

2013.

4. For testing purposes, we will only use Anonymous authentication. Azure AD and other

compatible authentication mechanisms should work with this example as well, refer to

Appendix A: Configuring the API App with OAuth Security for details on using OAuth

authentication.

5. You will need an active Azure subscription to host the API App.

6. You should have some cursory knowledge of the following technologies:

 Azure, including the Microsoft Azure management portals

 Web apps/Azure API apps/Azure AD apps

 REST services

https://azure.microsoft.com/en-us/services/app-service/api/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-platform/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/
http://help.k2.com/kb001757
http://help.k2.com/kb001757
http://help.k2.com/kb001758

 Swagger (used to describe the service)

 OAuth

 Visual Studio

Setting up the Azure API App
If you already have an Azure API app deployed, you can skip this section and start at Creating the REST

Broker Service Instance. Otherwise, follow Microsoft’s To Do List tutorial to download the sample

project, and walk through the tutorial steps up to the point where you publish the ToDoListDataAPI to

Azure. (Note that some of the screenshots or instructions in the article may be outdated and you may

see slightly different options, especially during publication of the project.)

The To Do List application is a three-tiered application, and you may want to run the application locally

first before attempting to deploy it to Azure. For the purposes of this article, only the Data tier API app

(ToDoListDataAPI) app is deployed, since the Data tier API app is all that is necessary to demonstrate

the concept of querying and submitting data to an Azure API app using the REST broker in K2.

Creating the REST Broker Service Instance
REST services, unlike other web services, do not typically include metadata describing the data model

and methods used in the endpoints of the service. To integrate a REST service with K2 using the REST

broker, you must provide this metadata in Swagger format so that K2 can discover the data model and

methods in the REST service and generate Service Objects to represent those.

When you deploy an Azure API app to the cloud, and assuming you've incorporated the Swashbuckle

NuGet package in your source as shown in the To Do List API app tutorial, you can obtain the Swagger

API metadata for your API app by simply appending /swagger/docs/v1 to the API app URL (You can

obtain the API App URL from the API Definition in Azure Portal).

http://swagger.io/
at%20https:/azure.microsoft.com/en-us/documentation/articles/app-service-api-dotnet-get-started/
https://www.nuget.org/packages/Swashbuckle
https://www.nuget.org/packages/Swashbuckle

The location of the Swagger file can then be used directly in the REST broker service instance

configuration page to allow K2 to generate the Object Types and Service Operations necessary for

building SmartObjects that can interact with the Azure API app.

TIP: The Swagger file does not have to exist on the service endpoint, nor do the Swashbuckle classes

need to be part of the service's project. You can generate your own Swagger Descriptor file if you prefer,

as described in the K2 Knowledge Base article Generating a Swagger Descriptor for REST-based Services

using RESTUnited.com. However, having the Swagger descriptor generated for you and using the

Swagger descriptor URL directly in the service instance is a low-effort and low-maintenance way of

getting and updating a Swagger file.

You can see in the image below that the Descriptor Location field contains a URL to the Data tier API

app, with the /swagger/docs/v1 included at the end of the URL. Each time the service instance is

refreshed, the REST broker queries the URL for the latest Swagger JSON file and uses that to

generate/update the Object Types and Service Operations for the service instance.

http://help.k2.com/kb001758
http://help.k2.com/kb001758

In our example below, after registering the service instance using the generated Swagger descriptor

URL, the ToDoListDataAPI service instance contains one Object Type (ToDoItem) and one Service

Operation (ToDoList_DeleteByOwnerAndId), which the REST broker found in the Swagger descriptor

file when creating the service instance.

Once you have the instance created you generate your SmartObjects. For K2 blackpearl customers, if

you're using the SmartObject Service Tester tool, you can right-click on the instance and select Generate

SmartObjects. For Appit and K2 blackpearl customers, create them using the Generate SmartObjects

button when the service instance is selected.

Using the SmartObject Methods
To test that the SmartObjects are working properly, use the SmartObject Services Tester tool to execute

the ToDoList_GetByOwner method of the ToDoItem SmartObject, using an asterisk (*) as the owner, as

shown below:

Next, try adding something to the list through the SmartObject. Do this by first running the Serialize

method of the same SmartObject, putting in a value of your choice in for the Description, and using * as

the Owner:

Copy the Serialized Item (String) value into something like Notepad, and then paste the serialized string

as the input for the ToDoList_PostByTodo method, as shown below:

Now you can run the original ToDoList_GetByOwner method again to make sure your new item has

been added to the list:

Appendix A: Configuring the API App with OAuth Security
If you want to allow users to authenticate with the Azure API App through OAuth, you must create a

new Azure AD app or use an existing one. (If you want to use other authentication providers like

Facebook, Google, Twitter or a Microsoft Account you need to create an App using the desired

Authentication Provider). Securing an Azure API app requires that you create a new Azure Web app in

addition to an Azure AD app. This allows the access permission to be delegated from Azure web app to

the Azure AD app associated with the To Do List app.

At this point you'll find it helpful to carefully read the article How to configure your App Service

application to use Azure Active Directory login (https://azure.microsoft.com/en-

us/documentation/articles/app-service-mobile-how-to-configure-active-directory-authentication/) in

https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-how-to-configure-active-directory-authentication/
https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-how-to-configure-active-directory-authentication/

order to understand the authentication and authorization configuration. This is the same article that is

linked to from the information panel at the top of the AAD configuration blade as shown here:

When you add authentication to your Azure API app, you're creating a new Azure AD app that, by

default, is named the same as your Azure API app. This can be confusing, but it helps to remember that

your data API app is actually not technically an app but rather an API resource. If this API resource must

be secured, the API resource has to be associated with an Azure AD app, and that Azure AD app must be

trusted by another Azure AD app, in this case an app called K2REST WebApp. The following diagram

illustrates this. The token is generated by the K2REST WebApp that is attached to the Azure AD instance,

then (because it has permissions to call the Azure AD app linked to the ToDoListDataAPIAug2016 Azure

API app, it uses that token to retrieve the information.

You may not need to create a new Azure AD app in order to grant permissions to your Azure API service

(which is, in turn, secured by the Azure AD app called ToDoListDataAPIAug2016). You may already have

an existing Azure AD app in your Azure subscription. However, if you do need to create a new Azure AD

app, go to your Azure AD landing page in the old portal and click Add at the bottom of the page to

create a new web app.

The SIGN-ON URL and APP ID URL values don't really matter for the purposes of this article, but note

that the SIGN-ON URL is used as the default REPLY URL configuration for your Azure AD app.

Tip: Think of this Azure AD app as your master Azure AD app that has permissions to call into one or

more other Azure AD apps that are used to secure your Azure API apps. The practice of calling

everything an “app” can get a little confusing. Think of your Azure AD app (that you created when

configuring your data API app for authentication) as having a one-to-one relationship with your data API,

whereas the one you create here has one-to-many relationships with other Azure AD apps used to

secure other Azure APIs.

In order to setup an OAuth resource in K2 for your service instance to use, you must configure this Azure

AD web app properly. This involves specifying a valid Reply URI, generating a key for it, and delegating

permissions to the Azure AD app that is securing your Azure API app. These tasks cannot be done in the

standard Azure Portal but must currently be done in the old portal at

https://manage.windowsazure.com (The old portal is being phased out and it is assumed that this

functionality required here is going to be made available in the Azure Portal at some point).

Configuring your Azure AD App
In the old portal select Active Directory on the left side, then go into the directory that you want to use

(typically you'll only have one). Once in the directory, click the APPLICATIONS tab and find your Azure

Web App. Browse into your app and then click on CONFIGURE, and then follow these steps:

1. Make note of your web app's Client ID. This value is used in your OAuth resource parameters.

2. Generate a key to get a client secret that is used in your OAuth resource parameters. Important:

You only see this key once, so copy it and store it in a secure place.

3. Specify your Reply URL in the single sign-on section, which, if you're using a Denallix machine, is

https://k2.denallix.com/identity/token/oauth/2

4. Click Add application and find your application in the All Apps list, or search for it. Once you've

added it, delegate permissions for the web app to access it.

Tip: If you do not see your app you can search for it – sometimes it takes a while for it to appear

on the main list.

5. Save the configuration, and then click VIEW ENDPOINTS at the bottom to get your OAuth

Authorization and Token endpoint URLs which you use on the OAuth resource instance.

https://manage.windowsazure.com/
https://k2.denallix.com/identity/token/oauth/2

Configuring your OAuth Resource
Once you have all of this information, go to K2 Management or the Manage OAuth Resources form and

configure the OAuth resource with these values. For more information see OAuth authentication with

Azure OData Web Services (http://help.k2.com/kb001751), but here they are at a high level.

1. Create a new resource using the Microsoft Online resource type, giving it a name like ToDoList

2. Use the Authorization and Token endpoint URLs when creating the resource

http://help.k2.com/kb001751
http://help.k2.com/kb001751
http://help.k2.com/kb001751

3. Fill in the parameters of the resource with the information you gathered when setting up your

app, namely the client_id, redirect_uri, resource, and client_secret. Your final configuration

should have values in the following operations:

Parameter Operation Example Value

client_id Authorization,
Token and Refresh

50ddhha4-4c36-4eae-b3b5-1310188bc288

redirect_uri Authorization,
Token

https://k2.denallix.com/identity/token/oauth/2

resource Authorization,
Token and Refresh

https://todolistdataapiaug2016.azurewebsites.net

client_secret Token and Refresh fjiXs/VyllMF5GQABwWsS6RSGCsKdq1IUSWCex7KNdo=

4. Your redirect_uri must be the same as the one you configured the app with, and is in the

format: https://{URL}/identity/token/oauth/2

Your final OAuth resource will look similar to the following:

5. Register a new REST broker service instance using the SmartObject Services Tester Tool or K2

Management.

6. Choose OAuth as the authentication for the service instance, and then select the OAuth

resource you created.

7. Point the Descriptor Location to the online URL with /swagger/docs/v1 at the end of it, for

example https://todolistdataapiaug2016.azurewebsites.net/swagger/docs/v1 (You may have to

add the s in https if it only includes http)

https://k2.denallix.com/identity/token/oauth/2
https://todolistdataapiaug2016.azurewebsites.net/
https://todolistdataapiaug2016.azurewebsites.net/swagger/docs/v1

8. Click OK to add the service instance, logging into Azure with your credentials, and granting the

app permission to act on your behalf.

9. Once the service instance is registered, generate SmartObjects and use them in K2

Management, the SmartObject Services Tester tool, or in a view to interact with your data in the

cloud.

Appendix B: Using the REST Broker with Microsoft Graph
Using the REST broker with an app that exposes Microsoft Graph functionality is similar to integrating

with an Azure API app. For this section of the article you use a Web app (as opposed to a mobile app)

generated from Microsoft's Application Registration Portal (https://apps.dev.microsoft.com/). These

types of apps are sometimes referred to as 'v2' Azure apps.

When creating the new app be sure to make note of the following information:

 The Application Id: A long GUID like a17f3d75-b483-3847-88b3-39k2039485d19

 The Application secret (password): A long alphanumeric code like yzL5heUxouXTBbFLerZykd3

 Allow implicit flow of the token and add a K2 redirect URL in the format:

https://{URL}/identity/token/oauth/2

Once you have this information you can create the OAuth resource as you did for the Azure API app,

using the following for the resource:

 Authorization Endpoint: https://login.microsoftonline.com/common/oauth2/v2.0/authorize

 Token Endpoint: https://login.microsoftonline.com/common/oauth2/v2.0/token

For the Graph API you must also supply a scope for which permissions are granted to the K2 server to

act on your behalf. Scopes look like Directory.Read.All and Group.Read.All. For more information see

http://graph.microsoft.io/en-us/docs/authorization/permission_scopes)

Note: You do not have to follow the instructions in this appendix if you simply need to call the Graph

API. Microsoft makes Graph and all of the associated scopes available on the permission section of the

CONFIGURE page of your Azure AD app (as shown in step 4 of the Configuring your Azure AD App

section above). You could simply use that to call into the Graph API, as shown in the following image,

instead of creating a 'v2' app. You would still need to create a Swagger descriptor file, however.

https://apps.dev.microsoft.com/
https://login.microsoftonline.com/common/oauth2/v2.0/authorize
https://login.microsoftonline.com/common/oauth2/v2.0/token
http://graph.microsoft.io/en-us/docs/authorization/permission_scopes)

Once you have the OAuth resource created you can register an instance of the REST broker (But you will

need to create a Swagger file first in order to describe the service.) Attached you can find a

MicrosoftGraph-Example.json file that describes some of the Graph API. Use this as a starting example

to build your own. You may also want to look at KB001758 - Generating a Swagger Descriptor for REST-

based Services using RESTUnited.com

When you register the service instance you are redirected to authenticate and grant permissions to K2

to act on your behalf, calling the app with your token. Depending on the scope you specified in the

OAuth resource, the prompt to authorize K2 may have one or more permissions:

http://help.k2.com/kb001758
http://help.k2.com/kb001758

Clicking Accept grants the permissions and, once you register the instance, you'll see a list of service

objects created that you can then use to create SmartObjects.

