

Host Server Logging

INTRODUCTION TO HOST SERVER LOGGING

October 13

This document describes the Host Server logging framework. The logging framework provides a unified logging

mechanism that enables any subcomponent to log information to the same location.

WHITE PAPER: HOST SERVER LOGGING

 PAGE 2

CORPORATE HEADQUARTERS

4042 148th Avenue NE

Redmond, WA 98052

USA

PH +1 (425) 883 4200

FAX +1 (425) 671 0411

EMEA HEADQUARTERS

26 Worple Road

Wimbledon

London

UK

PH +1 44 (0) 845 612 0912

FAX +1 44 (0) 845 612 0911

APAC HEADQUARTERS

9 Shenton Way #06-02

Singapore

068813

PH +1 65 6327 4110

FAX +1 65 6327 4120

[WWW.K2.COM]

The information provided relates to pre-release software products, may include features only available after installation of additional add-ins,

and may be substantially modified before the commercial release. This information is provided for informational purposes only, and

SourceCode Technology Holdings, Inc. makes no warranties, expressed or implied, with respect to this document or the information contained

within it.

Copyright © 2008. SourceCode Technology Holdings Inc. All rights reserved. Patents pending. SourceCode and K2 are registered trademarks

or trademarks of SourceCode Technology Holdings, Inc. in the United States and/or other countries. The names of actual companies and

products mentioned herein may be the trademarks of their respective owners.

http://www.k2.net/

WHITE PAPER: HOST SERVER LOGGING

 PAGE 3

CONTENTS

CONTENTS ..3

 Introduction...4

 Host Server Logging Destinations ..4

 The Host Server Logging Configuration File ..4

 AppSettings ...6

 Extensions ...7

 ApplicationLevelLogSettings ...8

 CategoryList ..9

 MessageList ... 10

 Configuring Host Server Logging .. 10

 Severity Levels ... 10

 Enabling Logging ... 10

 Asynchronous Queuing .. 11

 Enabling Stack Trace ... 11

 Logging and Performance ... 11

 Recommendations ... 12

WHITE PAPER: HOST SERVER LOGGING

 PAGE 4

INTRODUCTION

K2 blackpearl has a unified logging framework. This allows any subcomponent of K2 blackpearl to log information
to the same location, leveraging a single mechanism and eliminating the need for extra code and overhead. This
unified logging framework offers a variety of logging options for the Host Server, from different available log
destination/types, to individually set output severity levels, and more. This article discusses the available Host
Server logging options, how to configure them, and performance considerations for their use.

HOST SERVER LOGGING DESTINATIONS

There are five different types of logging available out of the box in K2 blackpearl. You can choose to log to any,
all, or none of them. Each destination can have customized logging levels configured. The five available types of
logging are:

 Console: Messages will be logged to the K2 [blackpearl] server console when the server is running in
console mode. To run the server in console mode, shut down the K2 Server (Start -> Administration
Tools -> Services. Find the K2 [blackpearl] Server and stop it). After the server is stopped, load the
console located at Start -> All Programs -> K2 [blackpearl] -> K2 [blackpearl] Server.

 File: Messages will be logged to a log file, saved to the location specified in the properties of its
configuration declaration.

 Windows Event Log: Messages will be recorded to the machine’s Windows Event Log.

 MS Message Queue (MSMQ): Messages can be logged to the Microsoft Messaging Queue. A logger
can then be setup to monitor the Message Queue for messages and take action when necessary. This is
useful when running multiple K2 [blackpearl] Servers, in a server farm for example, and one machine is
set-up to handle all of the logging. This configuration is beyond the scope of this article.

 SQL database: Messages will be logged to SQL server, allowing queries to be run against logged
messages. By default, messages will be logged to the HostServerDB connection, but the destination
database can be modified by changing the properties associated with this extension.

Each logging destination introduces its own level of overhead to the K2 server. Therefore, it is important to
balance the amount of information being logged, the destination of the logging, and server performance. Please
see the section “Logging and Performance” later in this document for further information.

THE HOST SERVER LOGGING CONFIGURATION FILE

The file used to define the Host Server Logging options is HostServerLogging.config. It is typically located at:

C:\Program Files\K2 blackpearl\Host Server\Bin\HostServerLogging.config

WHITE PAPER: HOST SERVER LOGGING

 PAGE 5

This file can be opened in any text editor. Opening in an editor such as Visual Studio provides a convenient
color-coded view. Let’s investigate the basic structure of the HostServerLogging.config file. There are 5 main
nodes in the file:

 appSettings

 Extensions

 ApplicationLevelLogSettings

 CategoryList

 MessageList

Each node is explained separately in the sections that follow.

WHITE PAPER: HOST SERVER LOGGING

 PAGE 6

APPSETTINGS

Allows you to configure certain system-wide logging settings. Keys included are:

Key Name Description Default

DateFormat define the format for the date/time stamp on
events

 "yyyy-MM-dd hh:mm:ss"

LogLevel define the default base log level "All"

RowHash specify whether to create Checksum/Hash for
each row in log file

 "False"

Thread
Priority

Adjust Logger Thread Priority
Low/Normal/High

1 "Low"

AsyncQueue
Enabled

define whether asynchronous queuing is
enabled

2 "True"

IncludeStack
Trace

If the message logged was an exception, you
can choose to include the stack trace

 3 "False"

Preserve
Sequence

define whether to preserve the log file
SequenceNumber between restarts

5 "True"

AddGUID whether to add a GUID per log entry "True"

MSMQActive Whether MSMQ is available as a logging option "False

MSMQPath Set MSMQ Path for MSMQ-based logging .\private$\SCQueue

1 Increasing the Thread Priority can have a performance impact on your server(s).

2 By default, logging is performed asynchronously. This means that the K2 Host Server

continues without waiting for confirmation that the message was successfully logged.

 Disabling asynchronous queuing prevents K2 from performing any additional action until

confirmation is received that the event has been logged. This can be used while

troubleshooting, to ensure that all possible logging is received.

 Disabling asynchronous queuing can have a performance impact on your server(s). It is

recommended you only disable asynchronous queuing during troubleshooting.

3 Including the stack trace should ONLY be enabled when troubleshooting K2 Host Server

crashes.

WHITE PAPER: HOST SERVER LOGGING

 PAGE 7

4 By default, only a service restart will create a new log file.

5 By default, Host Server log files are named using the format “HostServer” + “Date” + “_” +

“sequence number” + “.log”. The sequence number is incremented for every service restart

on the same date.

EXTENSIONS

Specifies the available logging locations, their source Assembly, and specific configuration values for that
extension. Default extensions are:

Extension Name Property Default

Console Shorthand "True"

Event Log N/A N/A

File

LogFileName "HostServer.log"

LogFilePath ""

HashAlgorithm "CRC32"

MaxFileSizeKB "0"

MaxLifeTimeSpan "0:0:0:00"

MSMQ QueuePath ".\private$\SCQueue"

Archive
HostServerConfigFileName "K2HostServer.config"

ConfigDBConnectionName "HostserverDB"

The Shorthand property under the Console extension determines whether the full timestamp is displayed in

events logged to the console. Set Shorthand=”False” if you wish to see the full timestamp.

WHITE PAPER: HOST SERVER LOGGING

 PAGE 8

APPLICATIONLEVELLOGSETTINGS

Each logging extension (destination) can be enabled individually, with its own level of logging output. This allows
you, for example, to log Error messages to the Event Log, but Warning and higher messages to file. The
ApplicationLevelLogSettings node of the configuration file determines the “Active” (True/False) state of each
logging location, as well as the level of messages logged to that location:

<ApplicationLevelLogSettings>

 <ApplicationLevelLogSetting Scope="Default">

 <LogLocationSettings>

 <LogLocation Name="ConsoleExtension" Active="True" LogLevel="Info" />

 <LogLocation Name="FileExtension" Active="False" LogLevel="All" />

 <LogLocation Name="EventLogExtension" Active="False" LogLevel="Debug" />

 <LogLocation Name="ArchiveExtension" Active="False" LogLevel="Debug" />

 <LogLocation Name="MSMQExtension" Active="False" LogLevel="Debug" />

 </LogLocationSettings>

 </ApplicationLevelLogSetting>

</ApplicationLevelLogSettings>

This section can also be modified to filter the logged messages by namespace. By adding
<ApplicationLevelLogSetting> sections with a scope other than “Default”, you can override the default logging
level for certain namespaces. This allows you to set a more restrictive logging level for some namespaces, thus
reducing the messages you consider “chatter”. This helps both to reduce the size of log files (or databases) and
to simplify troubleshooting by weeding out unnecessary messages. Below is an example of how to do this.

 <ApplicationLevelLogSetting Scope="SourceCode.Hosting">

 <LogLocationSettings>

 <LogLocation Name="ConsoleExtension" Active="True" LogLevel="Error" />

 <LogLocation Name="FileExtension" Active="True" LogLevel="Error" />

 </LogLocationSettings>

 </ApplicationLevelLogSetting>

 <ApplicationLevelLogSetting Scope="SourceCode.Workflow.Runtime.ClientConnection">

 <LogLocationSettings>

 <LogLocation Name="ConsoleExtension" Active="True" LogLevel="Error" />

 <LogLocation Name="FileExtension" Active="True" LogLevel="Error" />

 </LogLocationSettings>

 </ApplicationLevelLogSetting>

 <ApplicationLevelLogSetting Scope="SourceCode.Workflow.Runtime.SocketListener">

 <LogLocationSettings>

 <LogLocation Name="ConsoleExtension" Active="True" LogLevel="Error" />

 <LogLocation Name="FileExtension" Active="True" LogLevel="Error" />

 </LogLocationSettings>

 </ApplicationLevelLogSetting>

 <ApplicationLevelLogSetting Scope="SourceCode.EventBus">

 <LogLocationSettings>

 <LogLocation Name="ConsoleExtension" Active="True" LogLevel="Error" />

 <LogLocation Name="FileExtension" Active="True" LogLevel="Error" />

 </LogLocationSettings>

 </ApplicationLevelLogSetting>

WHITE PAPER: HOST SERVER LOGGING

 PAGE 9

CATEGORYLIST

Includes all the available categories with which to label a log entry. Currently, there are 17 defined categories
within K2 blackpearl Host Server logging.

Cat ID Category Name Friendly Text

0 General General Events

1 System System Events

2 Client Client Events

3 Security Security Events

3 Communication Communication Events

6 SmartFunctions SmartFunctions

7 Authorization Provider Authorization Provider

8 SmartObjects SmartObjects

9 DependancyService Dependancy Service

10 UserRoleManager UserRoleManager Server

11 CategoryServer Category Server

12 WorkflowServer Workflow Server

13 LiveCommServer Live Comm Server

14 EventBus Event Bus

15 EnvironmentServer Environment Server

16 SystemAudit System Audit

17 WorkActivity Work Activity

WHITE PAPER: HOST SERVER LOGGING

 PAGE 10

MESSAGELIST

The full list of messages available to the K2 Host Server’s Logging Framework. This section includes the
definition of each message, sorted by numeric message code. Some messages include variables (specified in
the “{0}” format). The message definition must include the severity level, category (see Category List, above),
and message name, as well as the message output format, including the expected variables.

It is possible to define custom error messages. Other articles discuss how to attach to the EventBus, and similar.
You can develop your own components that can use the Unified Logging Framework within K2 blackpearl.

 <MessageList>

 <!-- Severity Levels Are: Ignore, Debug, Info, Warning, Error -->

 <!-- Custom Logging Targets per entry: ToFile="True" ToConsole="True" ToEventLog="False"

ToCustom="False" -->

 <Message MsgID="0" Severity="Debug" Category="0" Name="Unknown" ToFile="True" ToConsole="True"

ToEventLog="True" ToCustom="False">

 Unknown Event Occured.

 </Message>

 <Message MsgID="1" Severity="Error" Category="0" Name="GeneralErrorMessage">

 {0}

 </Message>

CONFIGURING HOST SERVER LOGGING

There are really only two sections of the HostServerLogging.config file you will need to modify to configure

logging. For most situations, you need only set the specific log destination’s Active flag to true or false, and

specify the severity of messages to log. In rare circumstances, you may need to modify the “appSettings” section

of the file, particularly to disable asynchronous queuing and to include a stack trace.

All changes to the HostServerLogging.config file require a restart of the K2 service to take effect.

SEVERITY LEVELS

There are five severity levels. The five levels, in order of severity (highest to lowest) are:

 Error

 Warning

 Info

 Debug

 Ignore

The K2 Host Server will log messages with at least the severity level specified, to the defined destination. So,

based on the list above, setting the severity level to “Info” will result in all Info, Warning, and Error messages

being logged.

ENABLING LOGGING

The two most common forms of logging are “to Console” and “to File”. Logging to the console is very useful for

troubleshooting and validating general issues. However, from a performance perspective, logging to the console

has high overhead, and should only be enabled when needed. Similarly, logging to file has some additional

overhead. It is therefore recommended to only log “All” events to file during periods of troubleshooting. For more

regular monitoring purposes, you should scale back file-based logging to only log events of severity Warning or

higher.

WHITE PAPER: HOST SERVER LOGGING

 PAGE 11

Enable a Specific Logging Destination

1. Open HostServerLogging.config.

2. Find the "<ApplicationLevelLogSettings>" section .

3. Find the line for the specific Extension type you wish to enable.

4. Modify the Active setting from:

Active="False"

to:

Active="True"

Specify Severity Level

1. Open HostServerLogging.config.

2. Find the "<ApplicationLevelLogSettings>" section.

3. Find the line for the specific Extension type you wish to configure.

4. Modify the LogLevel setting:

LogLevel="All"

By default, console logging is turned on, but at the “Info” severity level. Thus, if you start K2 server in console

mode without modifying the HostServerLogging.config file, you will see Informational, Warning, and Error

messages. File-based logging is turned off by default.

Warning: The following settings can have a significant impact on K2 Server

performance. Do not change these settings unless requested to do so by a K2
Support Professional.

ASYNCHRONOUS QUEUING

By default, logging is performed asynchronously. This means that the K2 Host Server continues without waiting

for confirmation that the message was successfully logged. This is generally a good idea, since the log queue

generally receives lower thread priority than other K2 Server processing.

Disabling asynchronous queuing prevents the K2 Host Server from performing any additional action until

confirmation is received that the event has been logged. This can be used while troubleshooting, to ensure that

all possible logging is received. Disabling asynchronous queuing can have a performance impact on your

server(s). It is recommended you only disable asynchronous queuing during troubleshooting, and generally only

under the guidance of K2 Support.

ENABLING STACK TRACE

If you are experiencing unhandled exceptions in K2, leading to server/service crashes, you may be asked by K2

Support to enable the Stack Trace feature of logging. This will include a stack trace at the time the exception

occurs. You will have to disable asynchronous queuing to enable the stack trace functionality.

LOGGING AND PERFORMANCE

As previously mentioned, each type of Host Server logging has its own performance implications. With stack

trace disabled, and asynchronous queuing in use, only the log destination-type determines performance impacts.

Informal tests have shown the performance quality to be (from best to worst):

WHITE PAPER: HOST SERVER LOGGING

 PAGE 12

 Logging OFF

 Console

 SQL

 Event Logs

 File

Console logging offers no means of storing the logs past the buffer of the console window. Event Logs and SQL

have similar performance; the distinguishing characteristic between them is ease of consumption. Event Logs

tend to be difficult to traverse and can bog down heavily based on other OS-level conditions, whereas SQL is a

much more flexible means of storage – offering much greater storage and filtering capacity. File logging is

convenient for portability during troubleshooting, but has the highest overhead.

RECOMMENDATIONS

As a general rule, logging should only be enabled at the severity level necessary, and to the most efficient

destination possible. Here are some very general guidelines for K2 Host Server logging. Bear in mind that your

performance impacts and needs should play a significant part in your logging decisions.

During setup, testing, and troubleshooting, increases the level of logging to Debug. This will allow you to see the

maximum amount of information, and more easily determine exactly what is/isn’t working. Console and/or File

logging are typically best suited to short-term monitoring that fits these use models.

During normal operations, scale back the severity of messages being logged, especially to the slower

destinations. File logging, if needed, should be reserved for only the most severe messages (Error). Use SQL

logging for storing larger volumes of information, and/or for consolidating data from multiple K2 farm nodes.

Normal operating conditions should generally not need more than Warning level messages.

Synchronous logging and stack trace inclusion should ONLY be used under the supervision of K2 Support staff.

These options should not be used under normal operating conditions.

